

Getting Started with Recursion

Logistics: PollEV

Lecture Participation

● Starting next Wednesday, we will be using
the website PollEV to ask questions in
lecture.

● If you answer these questions in lecture –
regardless of whether you’re correct –
you’ll get attendance credit for the day.

● If you don’t attend lecture in person, no
worries! You can answer some online
questions within 48 hours of the lecture to
earn participation credit.

Lecture Participation

● We’ll use today to dry-run PollEV
questions.

● Let’s start with the following warm-up
question:

What is your favorite book?
● Answer online by visiting

https://pollev.com/cs106bwin23/

https://pollev.com/cs106bwin23/

Outline for Today

● Recursive Functions
● A new problem-solving perspective.

● Recursion on Strings
● Featuring cute animals!

Thinking Recursively

Factorials!

● The number n factorial, denoted n!, is

n × (n – 1) × … × 3 × 2 × 1
● Here’s some examples!

● 3! = 3 × 2 × 1 = 6.
● 4! = 4 × 3 × 2 × 1 = 24.
● 5! = 5 × 4 × 3 × 2 × 1 = 120.
● 0! = 1. (by definition!)

● Factorials show up in unexpected places! We’ll see
one later this quarter when we talk about sorting
algorithms!

● Let’s implement a function to compute factorials!

Computing Factorials

5! = 45 × 23 1× × ×

Computing Factorials

5! = 45 × 23 1× × ×

Computing Factorials

5! = 45 × 23 1× × ×

4!

Computing Factorials

5! = 4!5 ×

Computing Factorials

5! = 4!5 ×

Computing Factorials

5! = 4!5 ×
4! = 4 23 1× × ×

Computing Factorials

5! = 4!5 ×
4! = 4 23 1× × ×

Computing Factorials

5! = 4!5 ×
4! = 4 23 1× × ×

3!

Computing Factorials

5! = 4!5 ×
4! = 4 3!×

Computing Factorials

5! = 4!5 ×
4! = 4 3!×

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 3 × 2 1×

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 3 × 2 1×

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 3 × 2 1×

2!

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 3 × 2!

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 1!2 ×

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 1!2 ×
1! = 0!1 ×

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 1!2 ×
1! = 0!1 ×
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 1!2 ×
1! = 11 ×
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 1!2 ×
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 1!2 ×
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 12 ×
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 23 ×
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 6
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 6
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 6×
3! = 6
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 24
3! = 6
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 24
3! = 6
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 245 ×
4! = 24
3! = 6
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 120
4! = 24
3! = 6
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 120
4! = 24
3! = 6
2! = 2
1! = 1
0! = 1

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 1!2 ×
1! = 0!1 ×
0! = 1

Another View of Factorials

n! = {1 if n=0
n × (n−1)! otherwise

Andrews Compute Factorials

Me!

Andrews Compute Factorials

Me!

Andrews Compute Factorials
I wonder
what 3! is?

Me!

Andrews Compute Factorials
I’ll ask my

friend Andrew!

Me!

Andrews Compute Factorials
Andrew #3,
what’s 3! ?

Me!

Andrews Compute Factorials
Andrew #3,
what’s 3! ?

Andrew
#3

Me!

Andrews Compute Factorials
3! = 3 × 2!.
I wonder what

2! is?

Andrew
#3

Me!

Andrews Compute Factorials

Let me ask my
friend Andrew!

Andrew
#3

Me!

Andrews Compute Factorials

Andrew #2,
what’s 2! ?

Andrew
#3

Me!

Andrews Compute Factorials

Andrew #2,
what’s 2! ?

Andrew
#3

Andrew
#2

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

2! = 2 × 1!.
I wonder what

1! is?

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Let me ask my
friend Andrew!

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew #1,
what’s 1! ?

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew #1,
what’s 1! ?

Andrew
#1

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew
#1

1! = 1 × 0!.
I wonder
what 0! is?

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew
#1

Let me ask
my friend
Andrew!

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew
#1

Andrew #0,
what’s 0! ?

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew
#1

Andrew #0,
what’s 0! ?

Andrew
#0

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew
#1

Ooh, I
know!
0! is 1.

Andrew
#0

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew
#1

Thanks,
Andrew #0.

Andrew
#0

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew
#1

Thanks,
Andrew #0.

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew
#1

Because 0! = 1 and
1! = 1 × 0!, the
answer is 1! = 1.

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Andrew
#1

Thanks,
Andrew #1.

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Thanks,
Andrew #1.

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Because 1! = 1 and
2! = 2 × 1!, the
answer is 2! = 2.

Me!

Andrews Compute Factorials

Andrew
#3

Andrew
#2

Thanks,
Andrew #2.

Me!

Andrews Compute Factorials

Andrew
#3

Thanks,
Andrew #2.

Me!

Andrews Compute Factorials

Andrew
#3

Because 2! = 2 and
3! = 3 × 2!, the
answer is 3! = 6.

Me!

Andrews Compute Factorials

Andrew
#3

Thanks,
Andrew #3.

Me!

Andrews Compute Factorials
Thanks,

Andrew #3.

Me!

Andrews Compute Factorials

There are multiple people,
each named Andrew, but they’re

not the same person.

Each Andrew is tasked with
computing a different number

factorial.

Each Andrew gives their answer
back to the previous person.

Eventually I get the answer!

Recursion in Action
int main() {
 int nFact = factorial(3);
 cout << "3! = " << nFact << endl;

 return 0;
}

Recursion in Action
int main() {
 int nFact = factorial(3);
 cout << "3! = " << nFact << endl;

 return 0;
}

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

Recursion in Action

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

Recursion in Action

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

Recursion in Action

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

3

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

3

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

Every time we call factorial(),
we get a new copy of the local
variable n that’s independent

of all the previous copies.

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

2

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

2

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

1

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

1

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

3

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

0
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

3

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

0
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

3

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

0
int n

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

1

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

1 1

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

1 1

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

1 1×

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

4

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

1
int n

1

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

2

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

2 1

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

2 1

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

2 1×

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

5

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

2
int n

2

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

3

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

3 2

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

3 2

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

3 2×

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;

 return 0;
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

3
int n

Recursion in Action

6

int main() {
 int nFact = factorial(3);
 cout << "3! = " << nFact << endl;

 return 0;
}

Recursion in Action

int main() {
 int nFact = factorial(3);
 cout << "3! = " << nFact << endl;

 return 0;
}

Recursion in Action
6

int nFact

Thinking Recursively

● Solving a problem with recursion
requires two steps.

● First, determine how to solve the
problem for simple cases.
● This is called the base case.

● Second, determine how to break down
larger cases into smaller instances.
● This is called the recursive step.

Summing Up Digits

● On Wednesday, we wrote this function to
sum up the digits of a nonnegative integer:

 int sumOfDigitsOf(int n) {
 int result = 0;

 while (n > 0) {
 result += (n % 10);
 n /= 10;
 }

 return result;

 }

● Let’s rewrite this function recursively!

Summing Up Digits

1 2 5 8

1 2 5 8

The sum of the digits of
this number is equal to…

the sum of the digits of
this number... plus this number.

Summing Up Digits

1 2 5 8

1 2 5 8

sumOfDigitsOf(n)
is equal to...

the sum of the digits of
this number... plus this number.

Summing Up Digits

1 2 5 8

1 2 5 8

sumOfDigitsOf(n)
is equal to...

sumOfDigitsOf(n / 10) plus this number.

Summing Up Digits

1 2 5 8

1 2 5 8

sumOfDigitsOf(n)
is equal to...

sumOfDigitsOf(n / 10) + (n % 10)

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

1int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

1int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

1int n

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n

1

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n

1

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n

1 3+

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n
int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

13int n

4

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n

4

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n

4

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n

4 7+

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

137int n

11

Tracing the Recursion
int main() {
 int sum = sumOfDigitsOf(137);
 cout << "Sum is " << sum << endl;
}

11

Thinking Recursively

if (The problem is very simple) {

 Directly solve the problem.

 Return the solution.

} else {

 Split the problem into one or more
 smaller problems with the same
 structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall
 solution.

 Return the overall solution.

}

These simple
cases are called

base cases.

These are the
recursive cases.

Time-Out for Announcements!

MLK Weekend

● Some suggested reading / listening / watching
recommendations:
● “The Autobiography of Malcolm X,” as told to Alex Haley.
● “The Ballot or the Bullet” by Malcolm X.
● “Between the World and Me” by Ta-Nehisi Coates.
● “The Case for Reparations” by Ta-Nehisi Coates.
● “Debate at Cambridge Union,” James Baldwin and William F.

Buckley, Jr.
● “Do Artifacts Have Politics?” by Langdon Winner.
● “Letter from Birmingham City Jail” by Martin Luther King, Jr.
● “Letter from a Region in my Mind” by James Baldwin.
● “Notes on an Imagined Plaque” by The Memory Palace.
● “The Other America” by Martin Luther King, Jr.

Asynchronous Lecture

● We will not have class this upcoming
Monday in observance of the MLK
holiday.

● Monday’s lecture will instead be
prerecorded and available online on
Canvas starting at 5PM today.

● You should watch that lecture any time
before Wednesday’s (in-person) lecture.

Outdoor Activities Guide

● If case you’re looking for things to do in the area
this weekend, I’ve posted an Outdoor Activities
Guide on the course website.

● It’s a mix of places to go and places to get a bite
to eat.

● Some highlights:
● See the whole Santa Clara Valley and beyond from the

observatory on Mt. Hamilton.
● Walk among giant redwood trees and pick your own

bay leaves.

Section Signups

● Section signups are open right now.
They close Sunday at 5PM.

● Sign up for section at
https://cs198.stanford.edu/cs198/auth/default.aspx

● Click on “CS106 Sections Login,” then
choose “Section Signup.”

https://cs198.stanford.edu/cs198/auth/default.aspx

Assignment 1

● Assignment 0 was due today at 1:00PM Pacific.
● Assignment 1: Welcome to C++ goes out today.

It’s due on Friday, January 20th at 1:00PM Pacific.
● Play around with C++ and the Stanford libraries!
● Get some practice with recursion!
● Explore the debugger!
● See some pretty pictures! 😃

● We recommend making slow and steady progress
on this assignment throughout the course of the
week. There’s a recommended timetable at the
top of the assignment description.

Getting Help

Civil rights lawyer;
cofounded she++

Wrote the
textbook

Saved
taxpayers
$100M+

CTO

CS198
Coordinator

Lawyer for
low-income

families

Software
engineer

Founded
a company

Director
of Product

Product
Manager

Karate
Instructor

Me!

Founded
a company

Getting Help

● LaIR Hours
● Sunday – Thursday, 7PM – 11PM Pacific.
● Starts Monday.
● Runs in the Durand building 3rd floor.

● Neel’s and Keith’s Office Hours
● Check the website for times and places.

One More Unto the Breach!

Recursion and Strings

Thinking Recursively

1 2 5 8

1 2 5 8

Thinking Recursively

I B E X

I B E X
str[0] ???

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Thinking Recursively

I B E X

I B E X
str[0] str.substr(1)

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reversing a String Recursively

Reversing a String Recursively

T O PreverseOf(" ") =

Reversing a String Recursively

T O PreverseOf(" ") = TO PreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

TO PreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

TO PreverseOf(" ") +

OPreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

TO PreverseOf(" ") +

OPreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

TO PreverseOf(" ") +

OPreverseOf(" ") +

PreverseOf("") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

TO PreverseOf(" ") +

OPreverseOf(" ") +

PreverseOf("") +

reverseOf("") = ""

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

TO PreverseOf(" ") +

OPreverseOf(" ") +

P

reverseOf("") = ""

"" +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

TO PreverseOf(" ") +

OPreverseOf(" ") +

P

reverseOf("") = ""

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

TO PreverseOf(" ") +

OP

P

reverseOf("") = ""

+

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

TO PreverseOf(" ") +

OP

P

reverseOf("") = ""

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

T

OP

P

reverseOf("") = ""

OP +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

T

OP

P

reverseOf("") = ""

OP

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

TO PreverseOf(" ") +

OPreverseOf(" ") +

PreverseOf("") +

reverseOf("") = ""

I B E X

I B E X
input[0] input.substr(1)

Thinking Recursively

if (The problem is very simple) {

 Directly solve the problem.

 Return the solution.

} else {

 Split the problem into one or more
 smaller problems with the same
 structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall
 solution.

 Return the overall solution.

}

These simple
cases are called

base cases.

These are the
recursive cases.

Recap from Today

● Recursion works by identifying
● one or more base cases, simple cases that

can be solved directly, and
● one or more recursive cases, where a

larger problem is turned into a smaller one.
● Recursion is everywhere! And you can

use it on strings.

Your Action Items

● Sign Up for a Discussion Section
● Signups close this Sunday. Use the link we’ve shared

rather than signing up on Axess.
● Read Chapter 7.

● This chapter is all about recursion.
● Start Working on Assignment 1.

● Aim to complete the Debugger Warmups by Monday and
start working on Fire.

● Watch Recorded Lecture
● Pick a convenient time before Wednesday.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272

