
  

Getting Started with Recursion



  

Logistics: PollEV



  

Lecture Participation

● Starting next Wednesday, we will be using 
the website PollEV to ask questions in 
lecture.

● If you answer these questions in lecture – 
regardless of whether you’re correct – 
you’ll get attendance credit for the day.

● If you don’t attend lecture in person, no 
worries! You can answer some online 
questions within 48 hours of the lecture to 
earn participation credit.



  

Lecture Participation

● We’ll use today to dry-run PollEV 
questions.

● Let’s start with the following warm-up 
question:

What is your favorite book?
● Answer online by visiting

https://pollev.com/cs106bwin23/

https://pollev.com/cs106bwin23/


  

Outline for Today

● Recursive Functions
● A new problem-solving perspective.

● Recursion on Strings
● Featuring cute animals!



Thinking Recursively



Factorials!

● The number n factorial, denoted n!, is

n × (n – 1) × … × 3 × 2 × 1
● Here’s some examples!

● 3! = 3 × 2 × 1 = 6.
● 4! = 4 × 3 × 2 × 1 = 24.
● 5! = 5 × 4 × 3 × 2 × 1 = 120.
● 0! = 1. (by definition!)

● Factorials show up in unexpected places! We’ll see 
one later this quarter when we talk about sorting 
algorithms!

● Let’s implement a function to compute factorials!
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Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 1!2 ×
1! = 0!1 ×
0! = 1



Another View of Factorials

n! = {1 if n=0
n × (n−1)! otherwise
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Because 0! = 1 and
1! = 1 × 0!, the
answer is 1! = 1.
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Andrew
#3

Because 2! = 2 and
3! = 3 × 2!, the
answer is 3! = 6.
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Andrews Compute Factorials
Thanks,

Andrew #3.



Me!

Andrews Compute Factorials

There are multiple people,
each named Andrew, but they’re

not the same person.

Each Andrew is tasked with
computing a different number

factorial.

Each Andrew gives their answer
back to the previous person.

Eventually I get the answer!



Recursion in Action
int main() {
   int nFact = factorial(3);
   cout << "3! = " << nFact << endl;

   return 0;
}
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int factorial(int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}

2
int n

Every time we call factorial(), 
we get a new copy of the local 
variable n that’s independent 

of all the previous copies.
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Thinking Recursively

● Solving a problem with recursion 
requires two steps.

● First, determine how to solve the 
problem for simple cases.
● This is called the base case.

● Second, determine how to break down 
larger cases into smaller instances.
● This is called the recursive step.



Summing Up Digits

● On Wednesday, we wrote this function to 
sum up the digits of a nonnegative integer:

      int sumOfDigitsOf(int n) {
          int result = 0;

          while (n > 0) {
              result += (n % 10);
              n /= 10;
          }

          return result;

      }

● Let’s rewrite this function recursively!



Summing Up Digits

1 2 5 8

1 2 5 8

The sum of the digits of 
this number is equal to…

the sum of the digits of 
this number... plus this number.



Summing Up Digits

1 2 5 8

1 2 5 8

sumOfDigitsOf(n)
is equal to...

the sum of the digits of 
this number... plus this number.



Summing Up Digits

1 2 5 8

1 2 5 8

sumOfDigitsOf(n)
is equal to...

sumOfDigitsOf(n / 10) plus this number.



Summing Up Digits

1 2 5 8

1 2 5 8

sumOfDigitsOf(n)
is equal to...

sumOfDigitsOf(n / 10) + (n % 10)
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Thinking Recursively

if (The problem is very simple) {

    Directly solve the problem.

    Return the solution.

} else {

    Split the problem into one or more
    smaller problems with the same
    structure as the original.

    Solve each of those smaller problems.

    Combine the results to get the overall
    solution.

    Return the overall solution.

}

These simple 
cases are called 

base cases.

These are the 
recursive cases.



  

Time-Out for Announcements!



  

MLK Weekend

● Some suggested reading / listening / watching 
recommendations:
● “The Autobiography of Malcolm X,” as told to Alex Haley.
● “The Ballot or the Bullet” by Malcolm X.
● “Between the World and Me” by Ta-Nehisi Coates.
● “The Case for Reparations” by Ta-Nehisi Coates.
● “Debate at Cambridge Union,” James Baldwin and William F. 

Buckley, Jr.
● “Do Artifacts Have Politics?” by Langdon Winner.
● “Letter from Birmingham City Jail” by Martin Luther King, Jr.
● “Letter from a Region in my Mind” by James Baldwin.
● “Notes on an Imagined Plaque” by The Memory Palace.
● “The Other America” by Martin Luther King, Jr.



  

Asynchronous Lecture

● We will not have class this upcoming 
Monday in observance of the MLK 
holiday.

● Monday’s lecture will instead be 
prerecorded and available online on 
Canvas starting at 5PM today.

● You should watch that lecture any time 
before Wednesday’s (in-person) lecture.



  

Outdoor Activities Guide

● If case you’re looking for things to do in the area 
this weekend, I’ve posted an Outdoor Activities 
Guide on the course website.

● It’s a mix of places to go and places to get a bite 
to eat.

● Some highlights:
● See the whole Santa Clara Valley and beyond from the 

observatory on Mt. Hamilton.
● Walk among giant redwood trees and pick your own 

bay leaves.



  

Section Signups

● Section signups are open right now.  
They close Sunday at 5PM.

● Sign up for section at
https://cs198.stanford.edu/cs198/auth/default.aspx

● Click on “CS106 Sections Login,” then 
choose “Section Signup.”

https://cs198.stanford.edu/cs198/auth/default.aspx


  

Assignment 1

● Assignment 0 was due today at 1:00PM Pacific.
● Assignment 1: Welcome to C++ goes out today. 

It’s due on Friday, January 20th at 1:00PM Pacific.
● Play around with C++ and the Stanford libraries!
● Get some practice with recursion!
● Explore the debugger!
● See some pretty pictures! 😃

● We recommend making slow and steady progress 
on this assignment throughout the course of the 
week. There’s a recommended timetable at the 
top of the assignment description.



  

Getting Help



  

Civil rights lawyer;
cofounded she++

Wrote the
textbook

Saved
taxpayers
$100M+

CTO

CS198
Coordinator

Lawyer for
low-income

families

Software
engineer

Founded
a company

Director
of Product

Product
Manager

Karate
Instructor

Me!

Founded
a company



  

Getting Help

● LaIR Hours
● Sunday – Thursday, 7PM – 11PM Pacific.
● Starts Monday.
● Runs in the Durand building 3rd floor.

● Neel’s and Keith’s Office Hours
● Check the website for times and places.



  

One More Unto the Breach!



  

Recursion and Strings



  

Thinking Recursively

1 2 5 8

1 2 5 8



  

Thinking Recursively

I B E X

I B E X
str[0] ???

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23


  

Thinking Recursively

I B E X

I B E X
str[0] str.substr(1)



  

Reversing a String
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Thinking Recursively

if (The problem is very simple) {

    Directly solve the problem.

    Return the solution.

} else {

    Split the problem into one or more
    smaller problems with the same
    structure as the original.

    Solve each of those smaller problems.

    Combine the results to get the overall
    solution.

    Return the overall solution.

}

These simple 
cases are called 

base cases.

These are the 
recursive cases.



  

Recap from Today

● Recursion works by identifying
● one or more base cases, simple cases that 

can be solved directly, and
● one or more recursive cases, where a 

larger problem is turned into a smaller one.
● Recursion is everywhere! And you can 

use it on strings.



  

Your Action Items

● Sign Up for a Discussion Section
● Signups close this Sunday. Use the link we’ve shared 

rather than signing up on Axess.
● Read Chapter 7.

● This chapter is all about recursion.
● Start Working on Assignment 1.

● Aim to complete the Debugger Warmups by Monday and 
start working on Fire.

● Watch Recorded Lecture
● Pick a convenient time before Wednesday.
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