Getting Started with Recursion



Logistics: PollIEV



Lecture Participation

» Starting next Wednesday, we will be using
the website PollEV to ask questions in
lecture.

» If you answer these questions in lecture -
regardless of whether you’'re correct -
you’ll get attendance credit for the day.

 If you don’t attend lecture in person, no
worries! You can answer some online
questions within 48 hours of the lecture to
earn participation credit.



Lecture Participation

 We’ll use today to dry-run PollEV
questions.

* Let’s start with the following warm-up
question:

What is your favorite book?
 Answer online by visiting
htitps://pollev.com/cs106bwin23/



https://pollev.com/cs106bwin23/

Outline for Today

* Recursive Functions
A new problem-solving perspective.
* Recursion on Strings

* Featuring cute animals!



Thinking Recursively



Factorials!

« The number n factorial, denoted n!, is
nxXxn-1)x..x3x2x1

« Here’s some examples!
e 31=3x2x%x1=0.
e 41 =4 x 3 x2x1=24.
e 5!l =5 x4 x3x2x1=120.
0! = 1. (by definition!)
» Factorials show up in unexpected places! We’ll see

one later this quarter when we talk about sorting
algorithms!

* Let’s implement a function to compute factorials!
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Another View of Factorials
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Andrews Compute Factorials

00
@ There are multiple people,

each named Andrew, but they’re
/\ not the same person.
Each Andrew is tasked with
computing a different number
factorial.

Each Andrew gives their answer
Me! back to the previous person.

Eventually I get the answer!




Recursion in Action

int main() {
int nFact = factorial(3);
cout << "3! = " << nFact << endl;

return O;

}




Recursion in Action

infmain() {
|1nt nFact = factorial(3); \
cout << 3¢ = =~ << nrFact << end(,

return O;

}




Recursion in Action

int main() {

int factorlal(lnt n) {
if (n == 0) { 3
return 1; .
1 else { int n

return n * factorial(n - 1);

}
}




Recursion in Action

int main() {

return n * factorial(n - 1);




Recursion in Action

int main() {

int factorlal(lnt n) {
if (n==0) { 3
S n 1; .
1 else { int n

starn n * factorial(n - 1);
}
}




Recursion in Action

int main() {

int factorlal(lnt n) {
if (n == 0) { 3

return 1; int n

} else
tﬁeturn n * factorial(n - 1);]
}

}




Recursion in Action

int main() {

int factorlal(lnt n) {
if (n == 0) { 3
return 1; .
1 else { nt n

return@* factorial(n - 1);




Recursion in Action

int main() {

int factorlal(lnt n) {
if (n == 0) { 3
return 1; .
1 else { nt n

return@* factorial(n - 1);




Recursion in Action

int main() {

int factorlal(lnt n) {
if (n == 0) { 3
return 1; .
1 else { int n

return n *[factorlal(n - 1);]

} } 3




Recursion in Action

int main() {

int factorlal(lnt n) {

int factorlal(lnt n) {
if (n==0) { 2
return 1;
1 else { int n
return n * factorial(n - 1);
}

}




Recursion in Action

int main() {

int factorlal(lnt n) {

int factorlal(lnt n) {
if (n==0) { 2
return 1;
1 else { int n
return n * factorial(n - 1);

}

Every time we call factorial(),
we get a new copy of the local
variable n that’s independent
of all the previous copies.
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Thinking Recursively

* Solving a problem with recursion
requires two steps.

 First, determine how to solve the
problem for simple cases.

 This is called the base case.

 Second, determine how to break down
larger cases into smaller instances.

* This is called the recursive step.



Summing Up Digits

 On Wednesday, we wrote this function to
sum up the digits of a nonnegative integer:
int sumOfDigitsOf(int n) {
int result = 0;

while (n > 0) {
result += (n % 10);
n /= 10;

}

return result;

}
* Let’s rewrite this function recursively!
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Tracing the Recursion

int main() {
int sum = sumOfDigitsOf(137);
cout << "Sum is " << sum << endl;

}
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Thinking Recursively

if (The problem is very simple) {
Directly solve the problem.

Return the solution.
} else {

Split the problem into one or more
smaller problems with the same
structure as the original.

Solve each of those smaller problems.

Combine the results to get the overall
solution.

Return the overall solution.

These simple
cases are called

base cases,

These are the
yrecursive cases.,



Time-Out for Announcements!



MLK Weekend

« Some suggested reading / listening / watching
recommendations:

« “The Autobiography of Malcolm X,” as told to Alex Haley.
“The Ballot or the Bullet” by Malcolm X.

« “Between the World and Me” by Ta-Nehisi Coates.

« “The Case for Reparations” by Ta-Nehisi Coates.

« “Debate at Cambridge Union,” James Baldwin and William F.
Buckley, Jr.

« “Do Artifacts Have Politics?” by Langdon Winner.

« “Letter from Birmingham City Jail” by Martin Luther King, ]Jr.
« “Letter from a Region in my Mind” by James Baldwin.

* “Notes on an Imagined Plaque” by The Memory Palace.
 “The Other America” by Martin Luther King, Jr.



Asynchronous Lecture

 We will not have class this upcoming
Monday in observance of the MLK

holiday.

 Monday’s lecture will instead be
prerecorded and available online on

Canvas s

arting at 5PM today.

 You shoul

d watch that lecture any time

before Wednesday’s (in-person) lecture.



Outdoor Activities Guide

 If case you're looking for things to do in the area
this weekend, I've posted an Outdoor Activities
Guide on the course website.

 It’s a mix of places to go and places to get a bite
to eat.

 Some highlights:

» See the whole Santa Clara Valley and beyond from the
observatory on Mt. Hamilton.

 Walk among giant redwood trees and pick your own
bay leaves.



Section Signups

* Section signups are open right now.
They close Sunday at 5PM.

* Sign up for section at
https://cs198.stanford.edu/cs198/auth/default.aspx

* Click on “CS106 Sections Login,” then
choose “Section Signup.”



https://cs198.stanford.edu/cs198/auth/default.aspx

Assignment 1

« Assignment O was due today at 1:00PM Pacific.

» Assignment 1: Welcome to C++ goes out today.
It’s due on Friday, January 20" at 1:00PM Pacific.

« Play around with C++ and the Stanford libraries!
* Get some practice with recursion!

« Explore the debugger!

* See some pretty pictures!

 We recommend making slow and steady progress
on this assignment throughout the course of the
week. There’s a recommended timetable at the
top of the assignment description.



Getting Help



-

CS198 Me! Software Wrote the B

Coordinator | engineer textbook Founded
a company

Saved
' d taxpayers
] $100M+

Director
of Product

Civil rights lawyer;
cofounded she++

Founded
1 a company

Karate
Instructor

Lawyer for
low-income
families

Product
Manager




Getting Help

e LLalR Hours

 Sunday - Thursday, 7PM - 11PM Pacific.
« Starts Monday.
 Runs in the Durand building 3* floor.

 Neel’s and Keith’s Office Hours

 Check the website for times and places.



One More Unto the Breach!



Recursion and Strings



Thinking Recursively

1 2 5 8

125 8




Thinking Recursively

Il BE X

I BEX

str[0] 222
4

Answer at
https://pollev.com/cs106bwin23



https://pollev.com/cs106bwin23

Thinking Recursively

Il BE X

I BEX




Reversing a String

1 a

Il

X

e




Reversing a String

N ub 1 an I b e x

x eb Il maibu




Reversing a String

N ub 1 an I b e x

x eb Il maibu




Reversing a String

u

b

1

d

Il

|

b

e

X

x eb I mnaibu




Reversing a String

u

b

1

d

Nl

I

b

e

X

x eb I mnaibu




Reversing a String Recursively



Reversing a String Recursively

reverseOf(""T O P ") =




Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T




Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T

reverseOf("O P ") =




Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T

reverseOf("Q P ") = reverse0f(" [P ") +|0O




Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T

reverseOf("Q P ") = reverse0f(" [P ") +|0O

reverseOf (" @ ") =



Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T

reverseOf("Q P ") = reverse0f(" [P ") +|0O

reverseOf(" P ") = reverse0f("") + P




Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T

reverseOf("Q P ") = reverse0f(" [P ") +|0O

reverseOf(" P ") = reverse0f("") + P

reverseOf("") = ""



Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T

reverseOf("Q P ") = reverse0f(" [P ") +|0O

reverseOf(" P ") = "+ P

reverseOf("") = ""



Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T

reverseOf("O P ") = reverse0f(" [P ") +|0O
reverseOf(" P ") = P

reverseOf("") = ""




Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T

reverseOf ("OQ P ") = P+ 0O
reverseOf(" P ") = P

reverseOf("") = ""




Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T

reverseOf("O P ") = PO
reverseOf(" P ") = P

reverseOf("") = ""




Reversing a String Recursively

reverseOf ("'T O P ") = PO -+
reverseOf("O P ") = PO
reverseOf(" P ") = P

reverseOf("") = ""



Reversing a String Recursively

reverseOf("T O P ") = POT
reverseOf("O P ") = PO
reverseOf(" P ") = P

reverseOf("") = ""



Reversing a String Recursively

reverse0f (" T O P ") = reverseof(" O P ") + T

reverseOf("Q P ") = reverse0f(" [P ") +|0O

reverseOf(" P ") = reverse0f("") + P

reverseOf("") = ""

Il BEX
| B E X

input[0] input.substr(1)




Thinking Recursively

if (The problem is very simple) { These simple

Directly solve the problem. cases are called
base cases.,

Return the solution.

} else {

Split the problem into one or more \
smaller problems with the same
structure as the original.

Solve each of those smaller problems.

Combine the results to get the overall
solution.

Return the overall solution. y These are the
} recursive cases.,




Recap from Today

* Recursion works by identifying

 one or more base cases, simple cases that
can be solved directly, and

* Oone or more recursive cases, where a
larger problem is turned into a smaller one.

* Recursion is everywhere! And you can
use it on strings.



Your Action Items

* Sign Up for a Discussion Section

« Signups close this Sunday. Use the link we’ve shared
rather than signing up on Axess.

* Read Chapter 7.
« This chapter is all about recursion.
» Start Working on Assignment 1.

 Aim to complete the Debugger Warmups by Monday and
start working on Fire.

 Watch Recorded Lecture

* Pick a convenient time before Wednesday.
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